Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep learning based on mixed-variable physics informed neural network for solving fluid dynamics without simulation data (2111.09086v1)

Published 17 Nov 2021 in physics.flu-dyn, cs.NA, and math.NA

Abstract: Deep learning method has attracted tremendous attention to handle fluid dynamics in recent years. However, the deep learning method requires much data to guarantee the generalization ability and the data of fluid dynamics are deficient. Recently, physics informed neural network (PINN) is popular to solve the fluid flow problems, which basic concept is to embed the governing equation and continuity equation into loss function, with the requirement of less dataset for obtaining a reliable neural network. In this paper, the mixed-variable PINN method, which convert the governing equation into continuum and constitutive formulations, is proposed to solve the fluid dynamics (flow past cylinder) without any labeled data. The initial/boundary conditions with penalty factors are also embedded into the loss function to become a well-imposed problem. The results show that mixed-variable PINN has better predictive ability to construct the flow field than traditional PINN scheme. Furthermore, the transfer learning method is adopted to is solve the fluid solutions with different Reynold numbers with less computational cost. The results also demonstrate that the transfer learning method can well simulate the different Reynolds number in a short time.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.