Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Minimum Cuts in Directed Graphs via Partial Sparsification (2111.08959v1)

Published 17 Nov 2021 in cs.DS

Abstract: We give an algorithm to find a minimum cut in an edge-weighted directed graph with $n$ vertices and $m$ edges in $\tilde O(n\cdot \max(m{2/3}, n))$ time. This improves on the 30 year old bound of $\tilde O(nm)$ obtained by Hao and Orlin for this problem. Our main technique is to reduce the directed mincut problem to $\tilde O(\min(n/m{1/3}, \sqrt{n}))$ calls of {\em any} maxflow subroutine. Using state-of-the-art maxflow algorithms, this yields the above running time. Our techniques also yield fast {\em approximation} algorithms for finding minimum cuts in directed graphs. For both edge and vertex weighted graphs, we give $(1+\epsilon)$-approximation algorithms that run in $\tilde O(n2 / \epsilon2)$ time.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.