Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

CONFAIR: Configurable and Interpretable Algorithmic Fairness (2111.08878v3)

Published 17 Nov 2021 in cs.LG and cs.CY

Abstract: The rapid growth of data in the recent years has led to the development of complex learning algorithms that are often used to make decisions in real world. While the positive impact of the algorithms has been tremendous, there is a need to mitigate any bias arising from either training samples or implicit assumptions made about the data samples. This need becomes critical when algorithms are used in automated decision making systems that can hugely impact people's lives. Many approaches have been proposed to make learning algorithms fair by detecting and mitigating bias in different stages of optimization. However, due to a lack of a universal definition of fairness, these algorithms optimize for a particular interpretation of fairness which makes them limited for real world use. Moreover, an underlying assumption that is common to all algorithms is the apparent equivalence of achieving fairness and removing bias. In other words, there is no user defined criteria that can be incorporated into the optimization procedure for producing a fair algorithm. Motivated by these shortcomings of existing methods, we propose the CONFAIR procedure that produces a fair algorithm by incorporating user constraints into the optimization procedure. Furthermore, we make the process interpretable by estimating the most predictive features from data. We demonstrate the efficacy of our approach on several real world datasets using different fairness criteria.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.