Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Entropy optimized semi-supervised decomposed vector-quantized variational autoencoder model based on transfer learning for multiclass text classification and generation (2111.08453v1)

Published 10 Nov 2021 in cs.LG, cs.IT, and math.IT

Abstract: Semisupervised text classification has become a major focus of research over the past few years. Hitherto, most of the research has been based on supervised learning, but its main drawback is the unavailability of labeled data samples in practical applications. It is still a key challenge to train the deep generative models and learn comprehensive representations without supervision. Even though continuous latent variables are employed primarily in deep latent variable models, discrete latent variables, with their enhanced understandability and better compressed representations, are effectively used by researchers. In this paper, we propose a semisupervised discrete latent variable model for multi-class text classification and text generation. The proposed model employs the concept of transfer learning for training a quantized transformer model, which is able to learn competently using fewer labeled instances. The model applies decomposed vector quantization technique to overcome problems like posterior collapse and index collapse. Shannon entropy is used for the decomposed sub-encoders, on which a variable DropConnect is applied, to retain maximum information. Moreover, gradients of the Loss function are adaptively modified during backpropagation from decoder to encoder to enhance the performance of the model. Three conventional datasets of diversified range have been used for validating the proposed model on a variable number of labeled instances. Experimental results indicate that the proposed model has surpassed the state-of-the-art models remarkably.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.