Papers
Topics
Authors
Recent
2000 character limit reached

Delta-GAN-Encoder: Encoding Semantic Changes for Explicit Image Editing, using Few Synthetic Samples (2111.08419v2)

Published 16 Nov 2021 in cs.CV

Abstract: Understating and controlling generative models' latent space is a complex task. In this paper, we propose a novel method for learning to control any desired attribute in a pre-trained GAN's latent space, for the purpose of editing synthesized and real-world data samples accordingly. We perform Sim2Real learning, relying on minimal samples to achieve an unlimited amount of continuous precise edits. We present an Autoencoder-based model that learns to encode the semantics of changes between images as a basis for editing new samples later on, achieving precise desired results - example shown in Fig. 1. While previous editing methods rely on a known structure of latent spaces (e.g., linearity of some semantics in StyleGAN), our method inherently does not require any structural constraints. We demonstrate our method in the domain of facial imagery: editing different expressions, poses, and lighting attributes, achieving state-of-the-art results.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.