Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A fixed latency ORBGRAND decoder architecture with LUT-aided error-pattern scheduling (2111.08134v2)

Published 15 Nov 2021 in cs.IT, cs.AR, and math.IT

Abstract: Guessing Random Additive Noise Decoding (GRAND) is a universal decoding algorithm that has been recently proposed as a practical way to perform maximum likelihood decoding. It generates a sequence of possible error patterns and applies them to the received vector, checking if the result is a valid codeword. Ordered reliability bits GRAND (ORBGRAND) improves on GRAND by considering soft information received from the channel. Both GRAND and ORBGRAND have been implemented in hardware, focusing on average performance, sacrificing worst case throughput and latency. In this work, an improved pattern schedule for ORBGRAND is proposed. It provides $>0.5$ dB gain over the standard schedule at a block error rate $\le 10{-5}$, and outperforms more complex GRAND flavors with a fraction of the complexity. The proposed schedule is used within a novel code-agnositic decoder architecture: the decoder guarantees fixed high throughput and low latency, making it attractive for latency-constrained applications. It outperforms the worst-case performance of decoders by orders of magnitude, and outperforms many best-case figures. Decoding a code of length 128, it achieves a throughput of $79.21$ Gb/s with $58.49$ ns latency, yielding better energy efficiency and comparable area efficiency with respect to the state of the art.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.