Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Synthetic Unknown Class Learning for Learning Unknowns (2111.08062v1)

Published 15 Nov 2021 in cs.CV

Abstract: This paper addresses the open set recognition (OSR) problem, where the goal is to correctly classify samples of known classes while detecting unknown samples to reject. In the OSR problem, "unknown" is assumed to have infinite possibilities because we have no knowledge about unknowns until they emerge. Intuitively, the more an OSR system explores the possibilities of unknowns, the more likely it is to detect unknowns. Thus, this paper proposes a novel synthetic unknown class learning method that generates unknown-like samples while maintaining diversity between the generated samples and learns these samples. In addition to this unknown sample generation process, knowledge distillation is introduced to provide room for learning synthetic unknowns. By learning the unknown-like samples and known samples in an alternating manner, the proposed method can not only experience diverse synthetic unknowns but also reduce overgeneralization with respect to known classes. Experiments on several benchmark datasets show that the proposed method significantly outperforms other state-of-the-art approaches. It is also shown that realistic unknown digits can be generated and learned via the proposed method after training on the MNIST dataset.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)