Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NeuralPDE: Modelling Dynamical Systems from Data (2111.07671v3)

Published 15 Nov 2021 in cs.LG

Abstract: Many physical processes such as weather phenomena or fluid mechanics are governed by partial differential equations (PDEs). Modelling such dynamical systems using Neural Networks is an active research field. However, current methods are still very limited, as they do not exploit the knowledge about the dynamical nature of the system, require extensive prior knowledge about the governing equations or are limited to linear or first-order equations. In this work we make the observation that the Method of Lines used to solve PDEs can be represented using convolutions which makes convolutional neural networks (CNNs) the natural choice to parametrize arbitrary PDE dynamics. We combine this parametrization with differentiable ODE solvers to form the NeuralPDE Model, which explicitly takes into account the fact that the data is governed by differential equations. We show in several experiments on toy and real-world data that our model consistently outperforms state-of-the-art models used to learn dynamical systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Andrzej Dulny (6 papers)
  2. Andreas Hotho (49 papers)
  3. Anna Krause (12 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.