Papers
Topics
Authors
Recent
Search
2000 character limit reached

Versatile Inverse Reinforcement Learning via Cumulative Rewards

Published 15 Nov 2021 in cs.LG | (2111.07667v1)

Abstract: Inverse Reinforcement Learning infers a reward function from expert demonstrations, aiming to encode the behavior and intentions of the expert. Current approaches usually do this with generative and uni-modal models, meaning that they encode a single behavior. In the common setting, where there are various solutions to a problem and the experts show versatile behavior this severely limits the generalization capabilities of these methods. We propose a novel method for Inverse Reinforcement Learning that overcomes these problems by formulating the recovered reward as a sum of iteratively trained discriminators. We show on simulated tasks that our approach is able to recover general, high-quality reward functions and produces policies of the same quality as behavioral cloning approaches designed for versatile behavior.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.