Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Low-Subpacketization Multi-Antenna Coded Caching for Dynamic Networks (2111.07626v1)

Published 15 Nov 2021 in cs.IT and math.IT

Abstract: Multi-antenna coded caching combines a global caching gain, proportional to the total cache size in the network, with an additional spatial multiplexing gain that stems from multiple transmitting antennas. However, classic centralized coded caching schemes are not suitable for dynamic networks as they require prior knowledge of the number of users to indicate what data should be cached at each user during the placement phase. On the other hand, fully decentralized schemes provide comparable gains to their centralized counterparts only when the number of users is very large. In this paper, we propose a novel multi-antenna coded caching scheme for dynamic networks, where instead of defining individual cache contents, we associate users with a limited set of predefined caching profiles. Then, during the delivery phase, we aim at achieving a combined caching and spatial multiplexing gain, comparable to a large extent with the ideal case of fully centralized schemes. The resulting scheme imposes small subpacketization and beamforming overheads, is robust under dynamic network conditions, and incurs small finite-SNR performance loss compared with centralized schemes.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube