Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Federated Learning for Internet of Things: Applications, Challenges, and Opportunities (2111.07494v4)

Published 15 Nov 2021 in cs.LG

Abstract: Billions of IoT devices will be deployed in the near future, taking advantage of faster Internet speed and the possibility of orders of magnitude more endpoints brought by 5G/6G. With the growth of IoT devices, vast quantities of data that may contain users' private information will be generated. The high communication and storage costs, mixed with privacy concerns, will increasingly challenge the traditional ecosystem of centralized over-the-cloud learning and processing for IoT platforms. Federated Learning (FL) has emerged as the most promising alternative approach to this problem. In FL, training data-driven machine learning models is an act of collaboration between multiple clients without requiring the data to be brought to a central point, hence alleviating communication and storage costs and providing a great degree of user-level privacy. However, there are still some challenges existing in the real FL system implementation on IoT networks. In this paper, we will discuss the opportunities and challenges of FL in IoT platforms, as well as how it can enable diverse IoT applications. In particular, we identify and discuss seven critical challenges of FL in IoT platforms and highlight some recent promising approaches towards addressing them.

Citations (139)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.