Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Federated Learning for Internet of Things: Applications, Challenges, and Opportunities (2111.07494v4)

Published 15 Nov 2021 in cs.LG

Abstract: Billions of IoT devices will be deployed in the near future, taking advantage of faster Internet speed and the possibility of orders of magnitude more endpoints brought by 5G/6G. With the growth of IoT devices, vast quantities of data that may contain users' private information will be generated. The high communication and storage costs, mixed with privacy concerns, will increasingly challenge the traditional ecosystem of centralized over-the-cloud learning and processing for IoT platforms. Federated Learning (FL) has emerged as the most promising alternative approach to this problem. In FL, training data-driven machine learning models is an act of collaboration between multiple clients without requiring the data to be brought to a central point, hence alleviating communication and storage costs and providing a great degree of user-level privacy. However, there are still some challenges existing in the real FL system implementation on IoT networks. In this paper, we will discuss the opportunities and challenges of FL in IoT platforms, as well as how it can enable diverse IoT applications. In particular, we identify and discuss seven critical challenges of FL in IoT platforms and highlight some recent promising approaches towards addressing them.

Citations (139)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube