Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Federated Learning with Hyperparameter-based Clustering for Electrical Load Forecasting (2111.07462v1)

Published 14 Nov 2021 in cs.LG

Abstract: Electrical load prediction has become an integral part of power system operation. Deep learning models have found popularity for this purpose. However, to achieve a desired prediction accuracy, they require huge amounts of data for training. Sharing electricity consumption data of individual households for load prediction may compromise user privacy and can be expensive in terms of communication resources. Therefore, edge computing methods, such as federated learning, are gaining more importance for this purpose. These methods can take advantage of the data without centrally storing it. This paper evaluates the performance of federated learning for short-term forecasting of individual house loads as well as the aggregate load. It discusses the advantages and disadvantages of this method by comparing it to centralized and local learning schemes. Moreover, a new client clustering method is proposed to reduce the convergence time of federated learning. The results show that federated learning has a good performance with a minimum root mean squared error (RMSE) of 0.117kWh for individual load forecasting.

Citations (65)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube