Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

DEEP: DEnoising Entity Pre-training for Neural Machine Translation (2111.07393v1)

Published 14 Nov 2021 in cs.CL and cs.AI

Abstract: It has been shown that machine translation models usually generate poor translations for named entities that are infrequent in the training corpus. Earlier named entity translation methods mainly focus on phonetic transliteration, which ignores the sentence context for translation and is limited in domain and language coverage. To address this limitation, we propose DEEP, a DEnoising Entity Pre-training method that leverages large amounts of monolingual data and a knowledge base to improve named entity translation accuracy within sentences. Besides, we investigate a multi-task learning strategy that finetunes a pre-trained neural machine translation model on both entity-augmented monolingual data and parallel data to further improve entity translation. Experimental results on three language pairs demonstrate that \method results in significant improvements over strong denoising auto-encoding baselines, with a gain of up to 1.3 BLEU and up to 9.2 entity accuracy points for English-Russian translation.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.