Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

What Should We Optimize in Participatory Budgeting? An Experimental Study (2111.07308v1)

Published 14 Nov 2021 in cs.MA, cs.AI, and cs.GT

Abstract: Participatory Budgeting (PB) is a process in which voters decide how to allocate a common budget; most commonly it is done by ordinary people -- in particular, residents of some municipality -- to decide on a fraction of the municipal budget. From a social choice perspective, existing research on PB focuses almost exclusively on designing computationally-efficient aggregation methods that satisfy certain axiomatic properties deemed "desirable" by the research community. Our work complements this line of research through a user study (N = 215) involving several experiments aimed at identifying what potential voters (i.e., non-experts) deem fair or desirable in simple PB settings. Our results show that some modern PB aggregation techniques greatly differ from users' expectations, while other, more standard approaches, provide more aligned results. We also identify a few possible discrepancies between what non-experts consider \say{desirable} and how they perceive the notion of "fairness" in the PB context. Taken jointly, our results can be used to help the research community identify appropriate PB aggregation methods to use in practice.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: