Papers
Topics
Authors
Recent
2000 character limit reached

Learning to Evolve on Dynamic Graphs (2111.07032v1)

Published 13 Nov 2021 in cs.LG

Abstract: Representation learning in dynamic graphs is a challenging problem because the topology of graph and node features vary at different time. This requires the model to be able to effectively capture both graph topology information and temporal information. Most existing works are built on recurrent neural networks (RNNs), which are used to exact temporal information of dynamic graphs, and thus they inherit the same drawbacks of RNNs. In this paper, we propose Learning to Evolve on Dynamic Graphs (LEDG) - a novel algorithm that jointly learns graph information and time information. Specifically, our approach utilizes gradient-based meta-learning to learn updating strategies that have better generalization ability than RNN on snapshots. It is model-agnostic and thus can train any message passing based graph neural network (GNN) on dynamic graphs. To enhance the representation power, we disentangle the embeddings into time embeddings and graph intrinsic embeddings. We conduct experiments on various datasets and down-stream tasks, and the experimental results validate the effectiveness of our method.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.