Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Interpretation with Explainable Knowledge Distillation (2111.06945v1)

Published 12 Nov 2021 in cs.LG and cs.AI

Abstract: Knowledge Distillation (KD) has been considered as a key solution in model compression and acceleration in recent years. In KD, a small student model is generally trained from a large teacher model by minimizing the divergence between the probabilistic outputs of the two. However, as demonstrated in our experiments, existing KD methods might not transfer critical explainable knowledge of the teacher to the student, i.e. the explanations of predictions made by the two models are not consistent. In this paper, we propose a novel explainable knowledge distillation model, called XDistillation, through which both the performance the explanations' information are transferred from the teacher model to the student model. The XDistillation model leverages the idea of convolutional autoencoders to approximate the teacher explanations. Our experiments shows that models trained by XDistillation outperform those trained by conventional KD methods not only in term of predictive accuracy but also faithfulness to the teacher models.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.