Papers
Topics
Authors
Recent
2000 character limit reached

Sampling from high-dimensional, multimodal distributions using automatically tuned, tempered Hamiltonian Monte Carlo (2111.06871v2)

Published 12 Nov 2021 in stat.CO and stat.ML

Abstract: Hamiltonian Monte Carlo (HMC) is widely used for sampling from high-dimensional target distributions with probability density known up to proportionality. While HMC possesses favorable dimension scaling properties, it encounters challenges when applied to strongly multimodal distributions. Traditional tempering methods, commonly used to address multimodality, can be difficult to tune, particularly in high dimensions. In this study, we propose a method that combines a tempering strategy with Hamiltonian Monte Carlo, enabling efficient sampling from high-dimensional, strongly multimodal distributions. Our approach involves proposing candidate states for the constructed Markov chain by simulating Hamiltonian dynamics with time-varying mass, thereby searching for isolated modes at unknown locations. Moreover, we develop an automatic tuning strategy for our method, resulting in an automatically-tuned, tempered Hamiltonian Monte Carlo (ATHMC). Unlike simulated tempering or parallel tempering methods, ATHMC provides a distinctive advantage in scenarios where the target distribution changes at each iteration, such as in the Gibbs sampler. We numerically show that our method scales better with increasing dimensions than an adaptive parallel tempering method and demonstrate its efficacy for a variety of target distributions, including mixtures of log-polynomial densities and Bayesian posterior distributions for a sensor network self-localization problem.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.