Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Pure Nash Equilibrium in Smart Charging Games (2111.06817v1)

Published 12 Nov 2021 in cs.GT

Abstract: Reinforcement Learning Algorithms (RLA) are useful machine learning tools to understand how decision makers react to signals. It is known that RLA converge towards the pure Nash Equilibria (NE) of finite congestion games and more generally, finite potential games. For finite congestion games, only separable cost functions are considered. However, non-separable costs, which depend on the choices of all players instead of only those choosing the same resource, may be relevant in some circumstances, like in smart charging games. In this paper, finite congestion games with non-separable costs are shown to have an ordinal potential function, leading to the existence of an action-dependent continuous potential function. The convergence of a synchronous RLA towards the pure NE is then extended to this more general class of congestion games. Finally, a smart charging game is designed for illustrating convergence of such learning algorithms.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.