Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A compact butterfly-style silicon photonic-electronic neural chip for hardware-efficient deep learning (2111.06705v2)

Published 11 Nov 2021 in cs.ET, cs.LG, physics.app-ph, and physics.optics

Abstract: The optical neural network (ONN) is a promising hardware platform for next-generation neurocomputing due to its high parallelism, low latency, and low energy consumption. Previous ONN architectures are mainly designed for general matrix multiplication (GEMM), leading to unnecessarily large area cost and high control complexity. Here, we move beyond classical GEMM-based ONNs and propose an optical subspace neural network (OSNN) architecture, which trades the universality of weight representation for lower optical component usage, area cost, and energy consumption. We devise a butterfly-style photonic-electronic neural chip to implement our OSNN with up to 7x fewer trainable optical components compared to GEMM-based ONNs. Additionally, a hardware-aware training framework is provided to minimize the required device programming precision, lessen the chip area, and boost the noise robustness. We experimentally demonstrate the utility of our neural chip in practical image recognition tasks, showing that a measured accuracy of 94.16% can be achieved in hand-written digit recognition tasks with 3-bit weight programming precision.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube