Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Character-level HyperNetworks for Hate Speech Detection (2111.06336v2)

Published 11 Nov 2021 in cs.CL

Abstract: The massive spread of hate speech, hateful content targeted at specific subpopulations, is a problem of critical social importance. Automated methods of hate speech detection typically employ state-of-the-art deep learning (DL)-based text classifiers-large pretrained neural LLMs of over 100 million parameters, adapting these models to the task of hate speech detection using relevant labeled datasets. Unfortunately, there are only a few public labeled datasets of limited size that are available for this purpose. We make several contributions with high potential for advancing this state of affairs. We present HyperNetworks for hate speech detection, a special class of DL networks whose weights are regulated by a small-scale auxiliary network. These architectures operate at character-level, as opposed to word or subword-level, and are several orders of magnitude smaller compared to the popular DL classifiers. We further show that training hate detection classifiers using additional large amounts of automatically generated examples is beneficial in general, yet this practice especially boosts the performance of the proposed HyperNetworks. We report the results of extensive experiments, assessing the performance of multiple neural architectures on hate detection using five public datasets. The assessed methods include the pretrained LLMs of BERT, RoBERTa, ALBERT, MobileBERT and CharBERT, a variant of BERT that incorporates character alongside subword embeddings. In addition to the traditional setup of within-dataset evaluation, we perform cross-dataset evaluation experiments, testing the generalization of the various models in conditions of data shift. Our results show that the proposed HyperNetworks achieve performance that is competitive, and better in some cases, than these pretrained LLMs, while being smaller by orders of magnitude.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube