Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Approximating Sparsest Cut in Low-Treewidth Graphs via Combinatorial Diameter (2111.06299v1)

Published 11 Nov 2021 in cs.DS

Abstract: The fundamental sparsest cut problem takes as input a graph $G$ together with the edge costs and demands, and seeks a cut that minimizes the ratio between the costs and demands across the cuts. For $n$-node graphs~$G$ of treewidth~$k$, \chlamtac, Krauthgamer, and Raghavendra (APPROX 2010) presented an algorithm that yields a factor-$2{2k}$ approximation in time $2{O(k)} \cdot \operatorname{poly}(n)$. Later, Gupta, Talwar and Witmer (STOC 2013) showed how to obtain a $2$-approximation algorithm with a blown-up run time of $n{O(k)}$. An intriguing open question is whether one can simultaneously achieve the best out of the aforementioned results, that is, a factor-$2$ approximation in time $2{O(k)} \cdot \operatorname{poly}(n)$. In this paper, we make significant progress towards this goal, via the following results: (i) A factor-$O(k2)$ approximation that runs in time $2{O(k)} \cdot \operatorname{poly}(n)$, directly improving the work of Chlamt\'a\v{c} et al. while keeping the run time single-exponential in $k$. (ii) For any $\varepsilon>0$, a factor-$O(1/\varepsilon2)$ approximation whose run time is $2{O(k{1+\varepsilon}/\varepsilon)} \cdot \operatorname{poly}(n)$, implying a constant-factor approximation whose run time is nearly single-exponential in $k$ and a factor-$O(\log2 k)$ approximation in time $k{O(k)} \cdot \operatorname{poly}(n)$. Key to these results is a new measure of a tree decomposition that we call combinatorial diameter, which may be of independent interest.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube