Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Probabilistic Contrastive Learning for Domain Adaptation (2111.06021v6)

Published 11 Nov 2021 in cs.CV

Abstract: Contrastive learning has shown impressive success in enhancing feature discriminability for various visual tasks in a self-supervised manner, but the standard contrastive paradigm (features+$\ell_{2}$ normalization) has limited benefits when applied in domain adaptation. We find that this is mainly because the class weights (weights of the final fully connected layer) are ignored in the domain adaptation optimization process, which makes it difficult for features to cluster around the corresponding class weights. To solve this problem, we propose the \emph{simple but powerful} Probabilistic Contrastive Learning (PCL), which moves beyond the standard paradigm by removing $\ell_{2}$ normalization and replacing the features with probabilities. PCL can guide the probability distribution towards a one-hot configuration, thus minimizing the discrepancy between features and class weights. We conduct extensive experiments to validate the effectiveness of PCL and observe consistent performance gains on five tasks, i.e., Unsupervised/Semi-Supervised Domain Adaptation (UDA/SSDA), Semi-Supervised Learning (SSL), UDA Detection and Semantic Segmentation. Notably, for UDA Semantic Segmentation on SYNTHIA, PCL surpasses the sophisticated CPSL-D by $>!2\%$ in terms of mean IoU with a much lower training cost (PCL: 1*3090, 5 days v.s. CPSL-D: 4*V100, 11 days). Code is available at https://github.com/ljjcoder/Probabilistic-Contrastive-Learning.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.