Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SwAMP: Swapped Assignment of Multi-Modal Pairs for Cross-Modal Retrieval (2111.05814v2)

Published 10 Nov 2021 in cs.LG and cs.CV

Abstract: We tackle the cross-modal retrieval problem, where learning is only supervised by relevant multi-modal pairs in the data. Although the contrastive learning is the most popular approach for this task, it makes potentially wrong assumption that the instances in different pairs are automatically irrelevant. To address the issue, we propose a novel loss function that is based on self-labeling of the unknown semantic classes. Specifically, we aim to predict class labels of the data instances in each modality, and assign those labels to the corresponding instances in the other modality (i.e., swapping the pseudo labels). With these swapped labels, we learn the data embedding for each modality using the supervised cross-entropy loss. This way, cross-modal instances from different pairs that are semantically related can be aligned to each other by the class predictor. We tested our approach on several real-world cross-modal retrieval problems, including text-based video retrieval, sketch-based image retrieval, and image-text retrieval. For all these tasks our method achieves significant performance improvement over the contrastive learning.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube