Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Rooted quasi-Stirling permutations of general multisets (2111.05758v1)

Published 10 Nov 2021 in math.CO and cs.DM

Abstract: Given a general multiset $\mathcal{M}={1{m_1},2{m_2},\ldots,n{m_n}}$, where $i$ appears $m_i$ times, a multipermutation $\pi$ of $\mathcal{M}$ is called {\em quasi-Stirling}, if it contains no subword of the form $abab$ with $a\neq b$. We designate exactly one entry of $\pi$, say $k\in \mathcal{M}$, which is not the leftmost entry among all entries with the same value, by underlining it in $\pi$, and we refer to the pair $(\pi,k)$ as a quasi-Stirling multipermutation of $\mathcal{M}$ rooted at $k$. By introducing certain vertex and edge labeled trees, we give a new bijective proof of an identity due to Yan, Yang, Huang and Zhu, which links the enumerator of rooted quasi-Stirling multipermutations by the numbers of ascents, descents, and plateaus, with the exponential generating function of the {\em bivariate Eulerian polynomials}. This identity can be viewed as a natural extension of Elizalde's result on $k$-quasi-Stirling permutations, and our bijective approach to proving it enables us to: (1) prove bijectively a Carlitz type identity involving quasi-Stirling polynomials on multisets that was first obtained by Yan and Zhu; (2) confirm a recent partial $\gamma$-positivity conjecture due to Lin, Ma and Zhang, and find a combinatorial interpretation of the $\gamma$-coefficients in terms of two new statistics defined on quasi-Stirling multipermutations called sibling descents and double sibling descents.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.