Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

STNN-DDI: A Substructure-aware Tensor Neural Network to Predict Drug-Drug Interactions (2111.05708v2)

Published 10 Nov 2021 in cs.LG and stat.ML

Abstract: Motivation: Computational prediction of multiple-type drug-drug interaction (DDI) helps reduce unexpected side effects in poly-drug treatments. Although existing computational approaches achieve inspiring results, they ignore that the action of a drug is mainly caused by its chemical substructures. In addition, their interpretability is still weak. Results: In this paper, by supposing that the interactions between two given drugs are caused by their local chemical structures (sub-structures) and their DDI types are determined by the linkages between different substructure sets, we design a novel Substructure-ware Tensor Neural Network model for DDI prediction (STNN-DDI). The proposed model learns a 3-D tensor of (substructure, in-teraction type, substructure) triplets, which characterizes a substructure-substructure interaction (SSI) space. According to a list of predefined substructures with specific chemical meanings, the mapping of drugs into this SSI space enables STNN-DDI to perform the multiple-type DDI prediction in both transductive and inductive scenarios in a unified form with an explicable manner. The compar-ison with deep learning-based state-of-the-art baselines demonstrates the superiority of STNN-DDI with the significant improvement of AUC, AUPR, Accuracy, and Precision. More importantly, case studies illustrate its interpretability by both revealing a crucial sub-structure pair across drugs regarding a DDI type of interest and uncovering interaction type-specific substructure pairs in a given DDI. In summary, STNN-DDI provides an effective approach to predicting DDIs as well as explaining the interaction mechanisms among drugs.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.