Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

System Level Synthesis-based Robust Model Predictive Control through Convex Inner Approximation (2111.05509v1)

Published 10 Nov 2021 in eess.SY and cs.SY

Abstract: We propose a robust model predictive control (MPC) method for discrete-time linear time-invariant systems with norm-bounded additive disturbances and model uncertainty. In our method, at each time step we solve a finite time robust optimal control problem (OCP) which jointly searches over robust linear state feedback controllers and bounds the deviation of the system states from the nominal predicted trajectory. By leveraging the System Level Synthesis (SLS) framework, the proposed robust OCP is formulated as a convex quadratic program in the space of closed-loop system responses. When an adaptive horizon strategy is used, we prove the recursive feasibility of the proposed MPC controller and input-to-state stability of the origin for the closed-loop system. We demonstrate through numerical examples that the proposed method considerably reduces conservatism when compared with existing SLS-based and tube-based robust MPC methods, while also enjoying low computational complexity.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.