Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

System Level Synthesis-based Robust Model Predictive Control through Convex Inner Approximation (2111.05509v1)

Published 10 Nov 2021 in eess.SY and cs.SY

Abstract: We propose a robust model predictive control (MPC) method for discrete-time linear time-invariant systems with norm-bounded additive disturbances and model uncertainty. In our method, at each time step we solve a finite time robust optimal control problem (OCP) which jointly searches over robust linear state feedback controllers and bounds the deviation of the system states from the nominal predicted trajectory. By leveraging the System Level Synthesis (SLS) framework, the proposed robust OCP is formulated as a convex quadratic program in the space of closed-loop system responses. When an adaptive horizon strategy is used, we prove the recursive feasibility of the proposed MPC controller and input-to-state stability of the origin for the closed-loop system. We demonstrate through numerical examples that the proposed method considerably reduces conservatism when compared with existing SLS-based and tube-based robust MPC methods, while also enjoying low computational complexity.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.