Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Collocation approximation by deep neural ReLU networks for parametric elliptic PDEs with lognormal inputs (2111.05504v5)

Published 10 Nov 2021 in math.NA and cs.NA

Abstract: We obtained convergence rates of the collocation approximation by deep ReLU neural networks of solutions to elliptic PDEs with lognormal inputs, parametrized by $\boldsymbol{y}$ from the non-compact set $\mathbb{R}\infty$. The approximation error is measured in the norm of the Bochner space $L_2(\mathbb{R}\infty, V, \gamma)$, where $\gamma$ is the infinite tensor product standard Gaussian probability measure on $\mathbb{R}\infty$ and $V$ is the energy space. We also obtained similar results for the case when the lognormal inputs are parametrized on $\mathbb{R}M$ with very large dimension $M$, and the approximation error is measured in the $\sqrt{g_M}$-weighted uniform norm of the Bochner space $L_\infty{\sqrt{g}}(\mathbb{R}M, V)$, where $g_M$ is the density function of the standard Gaussian probability measure on $\mathbb{R}M$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)