Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Disjoint edges in geometric graphs (2111.05425v2)

Published 9 Nov 2021 in math.CO and cs.CG

Abstract: A geometric graph is a graph drawn in the plane so that its vertices and edges are represented by points in general position and straight line segments, respectively. A vertex of a geometric graph is called pointed if it lies outside of the convex hull of its neighbours. We show that for a geometric graph with $n$ vertices and $e$ edges there are at least $\frac{n}{2}\binom{2e/n}{3}$ pairs of disjoint edges provided that $2e\geq n$ and all the vertices of the graph are pointed. Besides, we prove that if any edge of a geometric graph with $n$ vertices is disjoint from at most $ m $ edges, then the number of edges of this graph does not exceed $n(\sqrt{1+8m}+3)/4$ provided that $n$ is sufficiently large. These two results are tight for an infinite family of graphs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.