Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MLHarness: A Scalable Benchmarking System for MLCommons (2111.05231v1)

Published 9 Nov 2021 in cs.LG

Abstract: With the society's growing adoption of ML and deep learning (DL) for various intelligent solutions, it becomes increasingly imperative to standardize a common set of measures for ML/DL models with large scale open datasets under common development practices and resources so that people can benchmark and compare models quality and performance on a common ground. MLCommons has emerged recently as a driving force from both industry and academia to orchestrate such an effort. Despite its wide adoption as standardized benchmarks, MLCommons Inference has only included a limited number of ML/DL models (in fact seven models in total). This significantly limits the generality of MLCommons Inference's benchmarking results because there are many more novel ML/DL models from the research community, solving a wide range of problems with different inputs and outputs modalities. To address such a limitation, we propose MLHarness, a scalable benchmarking harness system for MLCommons Inference with three distinctive features: (1) it codifies the standard benchmark process as defined by MLCommons Inference including the models, datasets, DL frameworks, and software and hardware systems; (2) it provides an easy and declarative approach for model developers to contribute their models and datasets to MLCommons Inference; and (3) it includes the support of a wide range of models with varying inputs/outputs modalities so that we can scalably benchmark these models across different datasets, frameworks, and hardware systems. This harness system is developed on top of the MLModelScope system, and will be open sourced to the community. Our experimental results demonstrate the superior flexibility and scalability of this harness system for MLCommons Inference benchmarking.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.