Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

A Deep Learning Technique using Low Sampling rate for residential Non Intrusive Load Monitoring (2111.05120v1)

Published 7 Nov 2021 in eess.SP, cs.AI, and cs.LG

Abstract: Individual device loads and energy consumption feedback is one of the important approaches for pursuing users to save energy in residences. This can help in identifying faulty devices and wasted energy by devices when left On unused. The main challenge is to identity and estimate the energy consumption of individual devices without intrusive sensors on each device. Non-intrusive load monitoring (NILM) or energy disaggregation, is a blind source separation problem which requires a system to estimate the electricity usage of individual appliances from the aggregated household energy consumption. In this paper, we propose a novel deep neural network-based approach for performing load disaggregation on low frequency power data obtained from residential households. We combine a series of one-dimensional Convolutional Neural Networks and Long Short Term Memory (1D CNN-LSTM) to extract features that can identify active appliances and retrieve their power consumption given the aggregated household power value. We used CNNs to extract features from main readings in a given time frame and then used those features to classify if a given appliance is active at that time period or not. Following that, the extracted features are used to model a generation problem using LSTM. We train the LSTM to generate the disaggregated energy consumption of a particular appliance. Our neural network is capable of generating detailed feedback of demand-side, providing vital insights to the end-user about their electricity consumption. The algorithm was designed for low power offline devices such as ESP32. Empirical calculations show that our model outperforms the state-of-the-art on the Reference Energy Disaggregation Dataset (REDD).

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.