Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Membership Inference Attacks Against Self-supervised Speech Models (2111.05113v4)

Published 9 Nov 2021 in cs.CR, cs.LG, cs.SD, and eess.AS

Abstract: Recently, adapting the idea of self-supervised learning (SSL) on continuous speech has started gaining attention. SSL models pre-trained on a huge amount of unlabeled audio can generate general-purpose representations that benefit a wide variety of speech processing tasks. Despite their ubiquitous deployment, however, the potential privacy risks of these models have not been well investigated. In this paper, we present the first privacy analysis on several SSL speech models using Membership Inference Attacks (MIA) under black-box access. The experiment results show that these pre-trained models are vulnerable to MIA and prone to membership information leakage with high Area Under the Curve (AUC) in both utterance-level and speaker-level. Furthermore, we also conduct several ablation studies to understand the factors that contribute to the success of MIA.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.