Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Lower Bound for Learning Causal DAGs with Atomic Interventions (2111.05070v4)

Published 9 Nov 2021 in cs.LG, cs.AI, cs.DM, stat.ME, and stat.ML

Abstract: A well-studied challenge that arises in the structure learning problem of causal directed acyclic graphs (DAG) is that using observational data, one can only learn the graph up to a "Markov equivalence class" (MEC). The remaining undirected edges have to be oriented using interventions, which can be very expensive to perform in applications. Thus, the problem of minimizing the number of interventions needed to fully orient the MEC has received a lot of recent attention, and is also the focus of this work. Our first result is a new universal lower bound on the number of single-node interventions that any algorithm (whether active or passive) would need to perform in order to orient a given MEC. Our second result shows that this bound is, in fact, within a factor of two of the size of the smallest set of single-node interventions that can orient the MEC. Our lower bound is provably better than previously known lower bounds. Further, using simulations on synthetic graphs and by giving examples of special graph families, we show that our bound is often significantly better. To prove our lower bound, we develop the notion of clique-block shared-parents (CBSP) orderings, which are topological orderings of DAGs without v-structures and satisfy certain special properties. We also use the techniques developed here to extend our results to the setting of multi-node interventions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Vibhor Porwal (4 papers)
  2. Piyush Srivastava (24 papers)
  3. Gaurav Sinha (18 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.