Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unified Group Fairness on Federated Learning (2111.04986v3)

Published 9 Nov 2021 in cs.LG

Abstract: Federated learning (FL) has emerged as an important machine learning paradigm where a global model is trained based on the private data from distributed clients. However, most of existing FL algorithms cannot guarantee the performance fairness towards different groups because of data distribution shift over groups. In this paper, we formulate the problem of unified group fairness on FL, where the groups can be formed by clients (including existing clients and newly added clients) and sensitive attribute(s). To solve this problem, we first propose a general fair federated framework. Then we construct a unified group fairness risk from the view of federated uncertainty set with theoretical analyses to guarantee unified group fairness on FL. We also develop an efficient federated optimization algorithm named Federated Mirror Descent Ascent with Momentum Acceleration (FMDA-M) with convergence guarantee. We validate the advantages of the FMDA-M algorithm with various kinds of distribution shift settings in experiments, and the results show that FMDA-M algorithm outperforms the existing fair FL algorithms on unified group fairness.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.