Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Data-Based Moving Horizon Estimation for Linear Discrete-Time Systems (2111.04979v3)

Published 9 Nov 2021 in eess.SY and cs.SY

Abstract: This paper introduces a data-based moving horizon estimation (MHE) scheme for linear time-invariant discrete-time systems. The scheme solely relies on collected data without employing any system identification step. Robust global exponential stability of the data-based MHE is proven under standard assumptions for the case where the online output measurements are corrupted by some non-vanishing measurement noise. A simulation example illustrates the behavior of the data-based MHE scheme.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.