A Survey and Empirical Evaluation of Parallel Deep Learning Frameworks (2111.04949v2)
Abstract: The field of deep learning has witnessed a remarkable shift towards extremely compute- and memory-intensive neural networks. These newer larger models have enabled researchers to advance state-of-the-art tools across a variety of fields. This phenomenon has spurred the development of algorithms for distributed training of neural networks over a larger number of hardware accelerators. In this paper, we discuss and compare current state-of-the-art frameworks for large scale distributed deep learning. First, we survey current practices in distributed learning and identify the different types of parallelism used. Then, we present empirical results comparing their performance on large image and language training tasks. Additionally, we address their statistical efficiency and memory consumption behavior. Based on our results, we discuss algorithmic and implementation portions of each framework which hinder performance.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.