Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Active Linear Regression for $\ell_p$ Norms and Beyond (2111.04888v4)

Published 9 Nov 2021 in cs.LG, cs.DS, and stat.ML

Abstract: We study active sampling algorithms for linear regression, which aim to query only a few entries of a target vector $b\in\mathbb Rn$ and output a near minimizer to $\min_{x\in\mathbb Rd} |Ax-b|$, for a design matrix $A\in\mathbb R{n \times d}$ and loss $|\cdot|$. For $p$ norm regression for any $0<p<\infty$, we give an algorithm based on Lewis weight sampling outputting a $(1+\epsilon)$-approximate solution using just $\tilde O(d/\epsilon2)$ queries to $b$ for $p\in(0,1)$, $\tilde{O}(d/\epsilon)$ queries for $1<p<2$, and $\tilde{O}(d{p/2}/\epsilonp)$ queries for $2<p<\infty$. For $0<p<2$, our bounds are optimal up to log factors, settling the query complexity for this range. For $2<p<\infty$, our dependence on $d$ is optimal, while our dependence on $\epsilon$ is off by at most $\epsilon$, up to log factors. Our result resolves an open question of [CD21], who gave near optimal bounds for the $1$ norm, but required $d2/\epsilon2$ samples for $\ell_p$ regression with $1<p<2$, and gave no bounds for $2<p<\infty$ or $0<p<1$. We also give the first total sensitivity bound of $O(d{\max{1,p/2}}\log2n)$ for loss functions of degree $p$ polynomial growth, improving a result of [TMF20]. By combining this with our techniques for $\ell_p$ regression, we obtain an active regression algorithm making $\tilde O(d{1+\max{1,p/2}}/\mathrm{poly}(\epsilon))$ queries for such loss functions, including the Tukey and Huber losses, answering another question of [CD21]. For the Huber loss, we further improve our bound to $\tilde O(d{4-2\sqrt2}/\mathrm{poly}(\epsilon))$ samples. Our sensitivity bounds also have many applications, including Orlicz norm subspace embeddings, robust subspace approximation, and dimension reduction for smoothed $p$-norms. Finally, our active sampling results give the first sublinear time algorithms for Kronecker product regression under every $p$ norm.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.