Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

EvoLearner: Learning Description Logics with Evolutionary Algorithms (2111.04879v2)

Published 8 Nov 2021 in cs.AI, cs.LG, and cs.NE

Abstract: Classifying nodes in knowledge graphs is an important task, e.g., for predicting missing types of entities, predicting which molecules cause cancer, or predicting which drugs are promising treatment candidates. While black-box models often achieve high predictive performance, they are only post-hoc and locally explainable and do not allow the learned model to be easily enriched with domain knowledge. Towards this end, learning description logic concepts from positive and negative examples has been proposed. However, learning such concepts often takes a long time and state-of-the-art approaches provide limited support for literal data values, although they are crucial for many applications. In this paper, we propose EvoLearner - an evolutionary approach to learn concepts in ALCQ(D), which is the attributive language with complement (ALC) paired with qualified cardinality restrictions (Q) and data properties (D). We contribute a novel initialization method for the initial population: starting from positive examples, we perform biased random walks and translate them to description logic concepts. Moreover, we improve support for data properties by maximizing information gain when deciding where to split the data. We show that our approach significantly outperforms the state of the art on the benchmarking framework SML-Bench for structured machine learning. Our ablation study confirms that this is due to our novel initialization method and support for data properties.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.