Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dueling RL: Reinforcement Learning with Trajectory Preferences (2111.04850v3)

Published 8 Nov 2021 in cs.LG

Abstract: We consider the problem of preference based reinforcement learning (PbRL), where, unlike traditional reinforcement learning, an agent receives feedback only in terms of a 1 bit (0/1) preference over a trajectory pair instead of absolute rewards for them. The success of the traditional RL framework crucially relies on the underlying agent-reward model, which, however, depends on how accurately a system designer can express an appropriate reward function and often a non-trivial task. The main novelty of our framework is the ability to learn from preference-based trajectory feedback that eliminates the need to hand-craft numeric reward models. This paper sets up a formal framework for the PbRL problem with non-markovian rewards, where the trajectory preferences are encoded by a generalized linear model of dimension $d$. Assuming the transition model is known, we then propose an algorithm with almost optimal regret guarantee of $\tilde {\mathcal{O}}\left( SH d \log (T / \delta) \sqrt{T} \right)$. We further, extend the above algorithm to the case of unknown transition dynamics, and provide an algorithm with near optimal regret guarantee $\widetilde{\mathcal{O}}((\sqrt{d} + H2 + |\mathcal{S}|)\sqrt{dT} +\sqrt{|\mathcal{S}||\mathcal{A}|TH} )$. To the best of our knowledge, our work is one of the first to give tight regret guarantees for preference based RL problems with trajectory preferences.

Citations (66)

Summary

We haven't generated a summary for this paper yet.