Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Treewidth versus clique number. II. Tree-independence number (2111.04543v5)

Published 8 Nov 2021 in math.CO, cs.DM, and cs.DS

Abstract: In 2020, we initiated a systematic study of graph classes in which the treewidth can only be large due to the presence of a large clique, which we call $(\mathrm{tw},\omega)$-bounded. While $(\mathrm{tw},\omega)$-bounded graph classes are known to enjoy some good algorithmic properties related to clique and coloring problems, it is an interesting open problem whether $(\mathrm{tw},\omega)$-boundedness also has useful algorithmic implications for problems related to independent sets. We provide a partial answer to this question by means of a new min-max graph invariant related to tree decompositions. We define the independence number of a tree decomposition $\mathcal{T}$ of a graph as the maximum independence number over all subgraphs of $G$ induced by some bag of $\mathcal{T}$. The tree-independence number of a graph $G$ is then defined as the minimum independence number over all tree decompositions of $G$. Generalizing a result on chordal graphs due to Cameron and Hell from 2006, we show that if a graph is given together with a tree decomposition with bounded independence number, then the Maximum Weight Independent Packing problem can be solved in polynomial time. Applications of our general algorithmic result to specific graph classes will be given in the third paper of the series [Dallard, Milani\v{c}, and \v{S}torgel, Treewidth versus clique number. III. Tree-independence number of graphs with a forbidden structure].

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.