Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Airport Delay Prediction with Transformers (2111.04494v1)

Published 4 Nov 2021 in cs.LG and cs.AI

Abstract: Airport performance prediction with a reasonable look-ahead time is a challenging task and has been attempted by various prior research. Traffic, demand, weather, and traffic management actions are all critical inputs to any prediction model. In this paper, a novel approach based on Temporal Fusion Transformer (TFT) was proposed to predict departure and arrival delays simultaneously for multiple airports at once. This approach can capture complex temporal dynamics of the inputs known at the time of prediction and then forecast selected delay metrics up to four hours into the future. When dealing with weather inputs, a self-supervised learning (SSL) model was developed to encode high-dimensional weather data into a much lower-dimensional representation to make the training of TFT more efficiently and effectively. The initial results show that the TFT-based delay prediction model achieves satisfactory performance measured by smaller prediction errors on a testing dataset. In addition, the interpretability analysis of the model outputs identifies the important input factors for delay prediction. The proposed approach is expected to help air traffic managers or decision makers gain insights about traffic management actions on delay mitigation and once operationalized, provide enough lead time to plan for predicted performance degradation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Liya Wang (16 papers)
  2. Alex Tien (6 papers)
  3. Jason Chou (6 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.