Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Debiasing Temporal Sentence Grounding in Video (2111.04321v1)

Published 8 Nov 2021 in cs.CV and cs.CL

Abstract: The temporal sentence grounding in video (TSGV) task is to locate a temporal moment from an untrimmed video, to match a language query, i.e., a sentence. Without considering bias in moment annotations (e.g., start and end positions in a video), many models tend to capture statistical regularities of the moment annotations, and do not well learn cross-modal reasoning between video and language query. In this paper, we propose two debiasing strategies, data debiasing and model debiasing, to "force" a TSGV model to capture cross-modal interactions. Data debiasing performs data oversampling through video truncation to balance moment temporal distribution in train set. Model debiasing leverages video-only and query-only models to capture the distribution bias, and forces the model to learn cross-modal interactions. Using VSLNet as the base model, we evaluate impact of the two strategies on two datasets that contain out-of-distribution test instances. Results show that both strategies are effective in improving model generalization capability. Equipped with both debiasing strategies, VSLNet achieves best results on both datasets.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.