Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Sequence Reconstruction Problem for Deletion Channels: A Complete Asymptotic Solution (2111.04255v1)

Published 8 Nov 2021 in cs.IT, math.CO, and math.IT

Abstract: Transmit a codeword $x$, that belongs to an $(\ell-1)$-deletion-correcting code of length $n$, over a $t$-deletion channel for some $1\le \ell\le t<n$. Levenshtein, in 2001, proposed the problem of determining $N(n,\ell,t)+1$, the minimum number of distinct channel outputs required to uniquely reconstruct $x$. Prior to this work, $N(n,\ell,t)$ is known only when $\ell\in{1,2}$. Here, we provide an asymptotically exact solution for all values of $\ell$ and $t$. Specifically, we show that $N(n,\ell,t)=\binom{2\ell}{\ell}/(t-\ell)! n{t-\ell} - O(n{t-\ell-1})$ and in the special instance where $\ell=t$, we show that $N(n,\ell,\ell)=\binom{2\ell}{\ell}$. We also provide a conjecture on the exact value of $N(n,\ell,t)$ for all values of $n$, $\ell$, and $t$.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.