Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Template NeRF: Towards Modeling Dense Shape Correspondences from Category-Specific Object Images (2111.04237v1)

Published 8 Nov 2021 in cs.CV

Abstract: We present neural radiance fields (NeRF) with templates, dubbed Template-NeRF, for modeling appearance and geometry and generating dense shape correspondences simultaneously among objects of the same category from only multi-view posed images, without the need of either 3D supervision or ground-truth correspondence knowledge. The learned dense correspondences can be readily used for various image-based tasks such as keypoint detection, part segmentation, and texture transfer that previously require specific model designs. Our method can also accommodate annotation transfer in a one or few-shot manner, given only one or a few instances of the category. Using periodic activation and feature-wise linear modulation (FiLM) conditioning, we introduce deep implicit templates on 3D data into the 3D-aware image synthesis pipeline NeRF. By representing object instances within the same category as shape and appearance variation of a shared NeRF template, our proposed method can achieve dense shape correspondences reasoning on images for a wide range of object classes. We demonstrate the results and applications on both synthetic and real-world data with competitive results compared with other methods based on 3D information.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.