Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Convergence analysis of two-level methods with general coarse solvers (2111.04189v1)

Published 7 Nov 2021 in math.NA and cs.NA

Abstract: Multilevel methods are among the most efficient numerical methods for solving large-scale linear systems that arise from discretized partial differential equations. The fundamental module of such methods is a two-level procedure, which consists of compatible relaxation and coarse-level correction. Regarding two-level convergence theory, most previous works focus on the case of exact (Galerkin) coarse solver. In practice, however, it is often too costly to solve the Galerkin coarse-level system exactly when its size is relatively large. Compared with the exact case, the convergence theory of inexact two-level methods is of more practical significance, while it is still less developed in the literature, especially when nonlinear coarse solvers are used. In this paper, we establish a general framework for analyzing the convergence of inexact two-level methods, in which the coarse-level system is solved approximately by an inner iterative procedure. The framework allows us to use various (linear, nonlinear, deterministic, randomized, or hybrid) solvers in the inner iterations, as long as the corresponding accuracy estimates are available.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube