Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards convergence to Nash equilibria in two-team zero-sum games (2111.04178v4)

Published 7 Nov 2021 in cs.GT, cs.LG, and math.OC

Abstract: Contemporary applications of machine learning in two-team e-sports and the superior expressivity of multi-agent generative adversarial networks raise important and overlooked theoretical questions regarding optimization in two-team games. Formally, two-team zero-sum games are defined as multi-player games where players are split into two competing sets of agents, each experiencing a utility identical to that of their teammates and opposite to that of the opposing team. We focus on the solution concept of Nash equilibria (NE). We first show that computing NE for this class of games is $\textit{hard}$ for the complexity class ${\mathrm{CLS}}$. To further examine the capabilities of online learning algorithms in games with full-information feedback, we propose a benchmark of a simple -- yet nontrivial -- family of such games. These games do not enjoy the properties used to prove convergence for relevant algorithms. In particular, we use a dynamical systems perspective to demonstrate that gradient descent-ascent, its optimistic variant, optimistic multiplicative weights update, and extra gradient fail to converge (even locally) to a Nash equilibrium. On a brighter note, we propose a first-order method that leverages control theory techniques and under some conditions enjoys last-iterate local convergence to a Nash equilibrium. We also believe our proposed method is of independent interest for general min-max optimization.

Citations (4)

Summary

We haven't generated a summary for this paper yet.