Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Automatic Goal Generation using Dynamical Distance Learning (2111.04120v1)

Published 7 Nov 2021 in cs.AI and cs.RO

Abstract: Reinforcement Learning (RL) agents can learn to solve complex sequential decision making tasks by interacting with the environment. However, sample efficiency remains a major challenge. In the field of multi-goal RL, where agents are required to reach multiple goals to solve complex tasks, improving sample efficiency can be especially challenging. On the other hand, humans or other biological agents learn such tasks in a much more strategic way, following a curriculum where tasks are sampled with increasing difficulty level in order to make gradual and efficient learning progress. In this work, we propose a method for automatic goal generation using a dynamical distance function (DDF) in a self-supervised fashion. DDF is a function which predicts the dynamical distance between any two states within a markov decision process (MDP). With this, we generate a curriculum of goals at the appropriate difficulty level to facilitate efficient learning throughout the training process. We evaluate this approach on several goal-conditioned robotic manipulation and navigation tasks, and show improvements in sample efficiency over a baseline method which only uses random goal sampling.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.