Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sampling from Log-Concave Distributions with Infinity-Distance Guarantees (2111.04089v3)

Published 7 Nov 2021 in cs.DS, cs.CR, cs.LG, math.PR, and stat.ML

Abstract: For a $d$-dimensional log-concave distribution $\pi(\theta) \propto e{-f(\theta)}$ constrained to a convex body $K$, the problem of outputting samples from a distribution $\nu$ which is $\varepsilon$-close in infinity-distance $\sup_{\theta \in K} |\log \frac{\nu(\theta)}{\pi(\theta)}|$ to $\pi$ arises in differentially private optimization. While sampling within total-variation distance $\varepsilon$ of $\pi$ can be done by algorithms whose runtime depends polylogarithmically on $\frac{1}{\varepsilon}$, prior algorithms for sampling in $\varepsilon$ infinity distance have runtime bounds that depend polynomially on $\frac{1}{\varepsilon}$. We bridge this gap by presenting an algorithm that outputs a point $\varepsilon$-close to $\pi$ in infinity distance that requires at most $\mathrm{poly}(\log \frac{1}{\varepsilon}, d)$ calls to a membership oracle for $K$ and evaluation oracle for $f$, when $f$ is Lipschitz. Our approach departs from prior works that construct Markov chains on a $\frac{1}{\varepsilon2}$-discretization of $K$ to achieve a sample with $\varepsilon$ infinity-distance error, and present a method to directly convert continuous samples from $K$ with total-variation bounds to samples with infinity bounds. This approach also allows us to obtain an improvement on the dimension $d$ in the running time for the problem of sampling from a log-concave distribution on polytopes $K$ with infinity distance $\varepsilon$, by plugging in TV-distance running time bounds for the Dikin Walk Markov chain.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.