Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Crowdsourcing with Meta-Workers: A New Way to Save the Budget (2111.04068v1)

Published 7 Nov 2021 in cs.LG, cs.AI, and cs.HC

Abstract: Due to the unreliability of Internet workers, it's difficult to complete a crowdsourcing project satisfactorily, especially when the tasks are multiple and the budget is limited. Recently, meta learning has brought new vitality to few-shot learning, making it possible to obtain a classifier with a fair performance using only a few training samples. Here we introduce the concept of \emph{meta-worker}, a machine annotator trained by meta learning for types of tasks (i.e., image classification) that are well-fit for AI. Unlike regular crowd workers, meta-workers can be reliable, stable, and more importantly, tireless and free. We first cluster unlabeled data and ask crowd workers to repeatedly annotate the instances nearby the cluster centers; we then leverage the annotated data and meta-training datasets to build a cluster of meta-workers using different meta learning algorithms. Subsequently, meta-workers are asked to annotate the remaining crowdsourced tasks. The Jensen-Shannon divergence is used to measure the disagreement among the annotations provided by the meta-workers, which determines whether or not crowd workers should be invited for further annotation of the same task. Finally, we model meta-workers' preferences and compute the consensus annotation by weighted majority voting. Our empirical study confirms that, by combining machine and human intelligence, we can accomplish a crowdsourcing project with a lower budget than state-of-the-art task assignment methods, while achieving a superior or comparable quality.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.