Papers
Topics
Authors
Recent
2000 character limit reached

SL-CycleGAN: Blind Motion Deblurring in Cycles using Sparse Learning (2111.04026v1)

Published 7 Nov 2021 in cs.CV and eess.IV

Abstract: In this paper, we introduce an end-to-end generative adversarial network (GAN) based on sparse learning for single image blind motion deblurring, which we called SL-CycleGAN. For the first time in blind motion deblurring, we propose a sparse ResNet-block as a combination of sparse convolution layers and a trainable spatial pooler k-winner based on HTM (Hierarchical Temporal Memory) to replace non-linearity such as ReLU in the ResNet-block of SL-CycleGAN generators. Furthermore, unlike many state-of-the-art GAN-based motion deblurring methods that treat motion deblurring as a linear end-to-end process, we take our inspiration from the domain-to-domain translation ability of CycleGAN, and we show that image deblurring can be cycle-consistent while achieving the best qualitative results. Finally, we perform extensive experiments on popular image benchmarks both qualitatively and quantitatively and achieve the record-breaking PSNR of 38.087 dB on GoPro dataset, which is 5.377 dB better than the most recent deblurring method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.