Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

Frequency Estimation with One-Sided Error (2111.03953v1)

Published 6 Nov 2021 in cs.DS and cs.CC

Abstract: Frequency estimation is one of the most fundamental problems in streaming algorithms. Given a stream $S$ of elements from some universe $U={1 \ldots n}$, the goal is to compute, in a single pass, a short sketch of $S$ so that for any element $i \in U$, one can estimate the number $x_i$ of times $i$ occurs in $S$ based on the sketch alone. Two state of the art solutions to this problems are the Count-Min and Count-Sketch algorithms. The frequency estimator $\tilde{x}$ produced by Count-Min, using $O(1/\varepsilon \cdot \log n)$ dimensions, guarantees that $|\tilde{x}-x|{\infty} \le \varepsilon |x|_1$ with high probability, and $\tilde{x} \ge x$ holds deterministically. Also, Count-Min works under the assumption that $x \ge 0$. On the other hand, Count-Sketch, using $O(1/\varepsilon2 \cdot \log n)$ dimensions, guarantees that $|\tilde{x}-x|{\infty} \le \varepsilon |x|_2$ with high probability. A natural question is whether it is possible to design the best of both worlds sketching method, with error guarantees depending on the $\ell_2$ norm and space comparable to Count-Sketch, but (like Count-Min) also has the no-underestimation property. Our main set of results shows that the answer to the above question is negative. We show this in two incomparable computational models: linear sketching and streaming algorithms. We also study the complementary problem, where the sketch is required to not over-estimate, i.e., $\tilde{x} \le x$ should hold always.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube